
Wednesday
Today:

Transverse Phase Space

Emittance (single particle, and beam)

Off-Momentum considerations

Dispersion

Path length



  

Overview

Found analytical solution to Hillʼs Equation:

So far, discussed amplitude function, β
What about A?

Given β(s), how big is the beam at a particular 
location?         mm?  cm?  m?

 If perturb the beamʼs trajectory, how much will it 
move downstream?

Single particle behavior vs. a “beam”

x(s) = A
√

β(s) sin[ψ(s) + δ]



  

Betatron Oscillation Amplitude

Transverse oscillations in a synchrotron (or beam line) are 
called Betatron Oscillations (first observed/analyzed in a 
betatron)

Given x = a
√

β sinψ + b
√

β cos ψ

x′ =
1
√

β
([b − aα] cos ψ − [a + bα] sinψ)

↓

a =
x0√
β0

, b =
α0x0 + β0x

′

0√
β0

=⇒ x(s) =

√

β(s)

β0

[x0 cos∆ψ + (α0x0 + β0x
′

0) sin∆ψ]

amplitude: A =

√

x2

0
+(α0x0+β0x′

0
)2

β0



  

Free Betatron Oscillation

Suppose a particle traveling along the design 
path is given a sudden (impulse) deflection 
through angle

Then, downstream, we have
∆x

′
= x

′

0 = ∆θ

s0
s

x

Example:
Suppose ∆θ = 0.1 mrad, β0 = 49 m, β(s) = 64 m,
and ∆ψ = n × 2π + 30◦. Then x(s) = 2.8 mm.

x(s) = ∆θ
√

β0β(s) sin[ψ(s) − ψ0]



  

Courant-Snyder Invariant

 In general,
x = A

√

β sinψ

x′ =
A
√

β
[cos ψ − α sinψ]

βx′ = A
√

β[cos ψ − α sinψ]

= A
√

β cos ψ − αx

βx′ + αx = A
√

β cos ψ

A2
= γx2

+ 2αxx′
+ βx′2

x2 + (βx′ + αx)2 = A2β

A2 =
x2 + (βx′ + αx)2

β

=
x2 + α2x2 + 2αβxx′ + β2x′2

β

While C-S parameters evolve along the beam line, the
  combination above remains constant.



  

The eqn. for the C-S invariant is that of an ellipse.                
If compute the area of the ellipse, find that 

 area = πA
2

x
′

x

area = πA
2
≡ ε

x̂ =

√

βε/π

x̂′ =

√

γε/π

x(x′ = 0) =
√

ε/πγ

x′(x = 0) =
√

ε/πβ

i.e., while the 
ellipse changes 
shape along the 
beam line, its area 
remains constant

Emittance =  area within a phase 
        space trajectory

Properties of the 
  Phase Space Ellipse

γx2
+ 2αxx′

+ βx′2
= A2



  

Motion in Phase Space

Follow phase space trajectory...

x

x’

x’

x equal areas

Bea
m Li

ne
 ...

α2, β2

α1, β1

area = πA
2



  

Beam Emittance

Phase space area 
which contains a 
certain fraction of the 
beam particles

Popular Choices:
95%
39%
15%
   ...more on this subject 

coming up...

x’

x



  

Adiabatic Damping 
   from Acceleration
Transverse oscillations imply transverse momentum.  As 

accelerate, momentum is “delivered” in the longitudinal 
direction (along the s-direction).  Thus, on average, the 
angular divergence of a particle will decrease, as will its 
oscillation amplitude, during acceleration.

The coordinates x-x’ are not canonical conjugates, but   
x-px are;  thus, the area of a trajectory in x-px phase space 
is invariant for adiabatic changes to the system.

s

∆p, from RF system



  

Normalized Beam Emittance

Hence, as particles are accelerated, the area in x-x’ 
phase space is not preserved, while area in x-px  is 
preserved.  Thus, we define a “normalized” beam emittance, 
as

 In principle, the normalized beam emittance should be 
preserved during acceleration, and hence along the chain of 
accelerators (at FNAL: Linac, Booster, Main Injector, etc.).  
Thus it is a measure of beam quality, and its preservation a 
measure of accelerator performance.

εN ≡ ε · (βγ)



  

Gaussian Beam in a 
   Periodic System
 Imagine a synchrotron in which the transverse distribution of 

circulating particles has reached an equilibrium with a 
Gaussian profile in transverse coordinate x with zero mean 
and standard deviationσ.
 The distribution can be described as follows:

βx’+αx

x

r2 = x2 + (βx′ + αx)2

Radius, a, containing fraction, f, of 
particles, corresponding to phase 
space area with emittance, ε:

ρ(r, θ)rdrdθ =
1

2πσ2
e−r2/2σ2

r drdθ

a2 = −2σ2 ln(1 − f) = εβ/π

∫ 2π

0

∫
a

0

ρ rdrdθ = f



  

Gaussian Emittance

So, the normalized emittance that contains a 
fraction f of a Gaussian beam is:

Common values of f :
εN =

−2π ln(1 − f)σ2(s)

β(s)
(βγ)

Lorentz!

f εN/(βγ)
95% 6πσ2/β

86.5% 4πσ2/β
39% πσ2/β
15% σ2/β

(rms emittance)



  

Emittance Measurements

Typical practice, in a synchrotron, is to 
measure rms beam size (assumed Gaussian), 
at a location where β is  presumed to be 
known, and thus emittance can be deduced.

While Gaussian description is often good 
approximation of the distribution, not 
necessarily true.  Also possible to define the 
emittance in terms of 2nd moments of the  
(arbitrary) distribution.



  

Emittance in Terms of Moments

For each particle,

Average over the (stationary) distribution...

x = A
√

β sinψ x′ =
A
√

β
(cos ψ − α sinψ)

x2 = A2β sin2 ψ x′2 =
A2

β
(cos2 ψ + α2 sin2 ψ − α sin 2ψ)

〈x2〉 =
1

2
〈A2〉β 〈x′2〉 =

〈A2〉

2β
(1 + α2) =

1

2
〈A2〉γ

xx′ = A2(
1

2
sin 2ψ − α sin2 ψ)

〈xx′〉 = −
1

2
〈A2〉α

and ...

From which the average of all particle emittances will be π〈A2〉 = 2π
√

〈x2〉〈x′2〉 − 〈xx′〉2

and the “normalized rms emittance” can be defined as: εN = π(βγ)
√

〈x2〉〈x′2〉 − 〈xx′〉2

βγ −
α
2 = 1



  

TRANSPORT of Beam Moments

For simplicity, define              ;  then,

Correlation Matrix:

 then, 

ε̃ ≡
1

2
〈A2〉

ε̃J =

(

ε̃α ε̃β
−ε̃γ −ε̃α

)

=

(

−〈xx′〉 〈x2〉
−〈x′2〉 〈xx′〉

)

Σ ≡

(

〈x2〉 〈xx′〉
〈xx′〉 〈x′2〉

)

= −ε̃JS, where S =

(

0 1

−1 0

)

Σ2 = −ε̃J2S = −ε̃MJ1M
−1

S

= M(−ε̃J1S)S−1
M

−1
S

= MΣ1S
−1

M
−1

S

= MΣ1M
T

Here, M is from 
point 1 to point 2 
along the beam line



  

Summary

So, can look at propagation of amplitude function through 
beam line given matrices of individual elements.  Beam size 
at a particular location determined by

Or, given an initial particle distribution, can look at 
propagation of second moments (position, angle) given the 
same element matrices.

Have neglected:
 dispersion of trajectories due to momentum (coming up)
 hor-ver coupling (typically zero, by design)

xrms(s) =
√

β(s)εN/π(βγ)



Off-Momentum
Equation of motion

Piecewise/matrix approach to solution

Periodic solution

Example:  FODO cell with bending

Dispersion in a chicane

Total beam size, including dispersion

Transition energy in a synchrotron



Homework for Thursday

Problem Set 2, No. 4

Problem Set 3, Nos. 1, 4, and 5


